Week 2 - Friday

COMP 2230



= Predicate logic

= Universal quantifier
= Existential quantifier
= Negating quantifiers
= Multiple quantifiers



Questions?




Assighment 1




= A bat costs $1 more than a ball
= Together, they cost $1.10
= How much does the ball cost?
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Multiple Quantifiers




= Given the formal statements with multiple quantifiers for
each of the following:

= There is someone for everyone.

= All roads lead to some city.

= Someone in this class is smarter than everyone else.
= There is no largest prime number.



= The rules don't change

= Simply switch every V todand everydto V
= Then negate the predicate

= Write the following formally:

= "Every rose has a thorn"
= Now, negate the formal version
= Convert the formal version back to informal



= As show before, changing the order of quantifiers can change
the truth of the whole statement

= However, it does not necessarily

= Furthermore, quantifiers of the same type are commutative:
= You can reorder a sequence of V quantifiers however you want
= The same goes for 3

= Once they start overlapping, however, you can't be sure anymore



Arguments with Quantified Statements




= Quantification adds new features to an argument
= The most fundamental is universal instantiation

= If a property is true for everything in a domain (universal quantifier),
it is true for any specific thing in the domain

= Example:

= All the party people in the place to be are throwing their hands in the
air!

= Juliois a party person in the place to be

= .. Juliois throwing his hands in the air



= Formally,
= Vx,P(x) > Q(x)
= P(a) for some particular a

= .Q(a)

= Example:

= |f any person disses Dr. Dre, he or she disses him or herself
= Tammy disses Dr. Dre
= Therefore, Tammy disses herself



= Much the same as universal modus ponens
= Formally,

= Vx,P(x) > Q(x)

= ~Q(a) for some particular a

= .~P(a)
= Example:

= Every true DJ can skratch

= John Comerford can't skratch

= Therefore, John Comerford is not a true DJ



= Unsurprisingly, the inverse and the converse of universal conditional
statements do not have the same truth value as the original
= Thus, the following are not valid arguments:

= If a personis a superhero, he or she can fly.
Astronaut John Blaha can fly.
Therefore, John Blaha is a superhero. FALLACY

A good man is hard to find.
Osama Bin Laden is not a good man.
Therefore, Osama Bin Laden is not hard to find. FALLACY



= We can test arguments using Venn diagrams
= To do so, we draw diagrams for each premise and then try to
combine the diagrams

Touchable This

things




= All integers are rational numbers
= +/2isnotrational

rational

numbers

= Therefore, V2 is not an integer

rational
numbers

integers

rational
numbers

integers




= All tigers are cats

= Panthrois a cat

= Therefore, Panthrois a tiger



= Diagrams can be useful tools

= However, they don't offer the guarantees that pure logic does

= Note that the previous slide makes the converse error unless
you are very careful with your diagrams



= In Java (and many other languages), there are two kinds of
equal signs: = (assignment) and == (testing for equality)

= Mathematicians have two as well, but they use the same
symbol!

= One kind of equal sign is a definition

= The other kind is a theorem



= The equal sign used for a definition is stating some fact, often
defining what words mean
= Example:

=x? = x-X
= |t's not like some argument was needed to show that x* means x - x,
it's the definition!
= Sometimes bidirectional implication is used in this situation,
arguably in a more clear way:

= xiseven & x = 2k, forsomeintegerk
def

= Some people will use = or =



= The other kind of equals shows a fact that has been derived
from other facts
= We've discovered that it's true!
= Example:
=3x + 2 =11 Definition
=3x =9
x = 3
= Sometimes confusion arises when people mistake one kind of
equals for another




Proving Existential Statements and

Disproving Universal Ones




= We'll start with basic definitions of even and odd to allow us to
prove simpler theorems
= [f nis aninteger, then:

"niseven<idkeZn = 2k

*nisodd=3idkeZn = 2k + 1
= Since these are bidirectional, each side implies the other



= [fnisanintegerwheren > 1, then:

"nisprimes Vr eZ+,V5 eZ+,ifn = r-s,thenr=1o0ors=1
o niscomposite<:>3reZ+,Els eZ+,n = r-sandrzlands=#1



= A statement like the following:

dx € D, P(x)

= istrue, if and only if, you can find at least one element of D that
makes P(x) true

= To prove this, you either have to find such an x or give a set of
steps to find one

= Doing so is called a constructive proof of existence

= There are also nonconstructive proofs of existence that depend
on using some other axiom or theorem



= Prove that there is a positive integer that can be written as the
sum of the squares of two positive integers in two distinct

ways
= More formally, prove:
= 3x,y,z,a,b eZ+,x = y* + z?andx = a? + b’andy#aand
y#b
= Suppose that 7 and s are integers. Prove that there is an
integer k such that 22r + 18s = 2k



= Disproving universal statements is structurally similar to

oroving existential ones

= Instead of needing any single example that works, we need a
single example that doesn't work, called a counterexample

= Why?

= Todisprove Vx € D, P(x) = Q(x), we need to find an x that
makes P(x) true and Q (x) false




= Using counterexamples, disprove the following statements:
= Va,b € R ifa? = b°thena = b
» Vx e Z",ifx = 2andxisodd, x is prime

= Vy eZ",if yisodd, then (y - 1)/2 is prime



Proving Universal Statements




If the domain is finite, try every possible value.
Example:

= Vx e Z%,if4 < x < 10andxiseven, x can be written as the sum

of two prime numbers
s this familiar to anyone?
Goldbach's Conjecture proposes that this is true for all even
integers greater than 2



= Pick some specific (but arbitrary) element from the domain

= Show that the property holds for that element, just because
of that properties that any such element must have

= Thus, it must be true for all elements with the property

= Example: Vx € Z, if x is even, thenx + 1is odd



= Direct proof actually uses the method of generalizing from a
generic particular, following these steps:

1.

Express the statement to be proved in the form Vx € D, if P(x)
then Q(x)

Suppose that x is some specific (but arbitrarily chosen) element of
D for which P(x) is true

Show that the conclusion Q(x) is true by using definitions, other
theorems, and the rules for logical inference



= Write the statement of the theorem

= Start your proof with the word Proof

= Define everything

= Write a justification next to every line

= Puta m ora QED at the end of your proof

= Quod erat demonstrandum: "that which was to be shown"



= Prove the sum of any two odd integers is even.



Arguing from examples

= Goldbach's conjecture is not a proof, though shown for numbers up to 10%®

Using the same letter to mean two different things

=m = 2k + landn = 2k + 1
Jumping to a conclusion

= Skipping steps
Begging the questi
= Assuming the conc
Misuse of the worc

= A more minor prob

on
usion
if

em, but a premise should not be invoked with "if"



= Flipmode is the squad
= You negate the statement and then prove the resulting
universal statement



Upcoming




= No class Monday!
= More proofs

= Rational numbers
= Divisibility
= Proof by cases



= Read Sections 4.3, 4.4, 4.5, and 4.6
= Keep working on Assignment 1
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